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We predict the existence of a special photonic band gap in a quasi-one-dimensional loop structure containing
negative-index materials in the subwavelength regime. The mechanism of the formation for this special band
gap is quite different from the so-called zero-average-index gaps in the one-dimensional structures, due to the
parallel action of the loop. The parallel action enhances the impedance contrast between the two parts on either
side of the interface in each unit cell, thus resulting in strong reflection which increases the width of the band
gap. In addition, we show that even large band gaps could be obtained in multichannel structures.
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Photonic band gap �PBG� materials �1� have received in-
creased attention during the past two decades. Conventional
PBGs originate from the interference of the Bragg scattering
in a periodical dielectric structure �1�. The PBG frequency is
inversely proportional to the lattice constant. Recently, there
has been a great deal of interest in studying a novel class of
media which has become known as negative-index materials
�NIMs� �2–12�. The NIMs are characterized by simultaneous
negative permittivity and permeability. Properties of NIMs
were analyzed theoretically by Veselago nearly 40 years ago
�2�, but only recently were they demonstrated experimentally
�6�. As was shown by Veselago, NIMs possess a number of
unusual electromagnetic effects, such as negative refraction
�4,9�, reversed Doppler shift �10�, and reversed Cerenkov
radiation �11�. These anomalous features allow considerable
control over light propagation and open the door for new
approaches to a variety of applications �4,13�.

The study of one-dimensional �1D� photonic crystals
�PhCs� containing NIMs presents another type of PBG, zero-
n̄ gap �14–16�, which is invariant upon length scale change.
Recent studies also show that twisting a structure enables
one to sculpt a microstructure which leads to the appearance
of low frequency band gaps responsible for the effective
negative refractive index �17�. In the search of large PBG
materials, quasi-1D systems come into sight �18–21�. The
comblike structure with branches constructed of NIM shows
new allowed minibands or minigaps for the electromagnetic
wave propagation �18�, and the inverse structure whose
backbone waveguide is of NIM and branches of positive in-
dex material provides a large gap invariant with scaling �19�.

Another quasi-1D structure, which is different from the
comb where the resonator is made of a loop instead of a side
branch, exhibits results in comparison with the comblike
structure. Thus so-called loop structure, whose band

structure results from both the periodicity and the interfer-
ence of the two arms of the loop, was studied in detail when
its components are positive refractive index materials
�20,21�.

In this study, we discuss the loop structure containing
NIMs. The transmission properties of such a structure have
not been investigated before, to the best of our knowledge. A
special band gap that is invariant with a change of scale
length is obtained, the behavior of which is quite different
from the so-called zero-average-index gaps of the one-
dimensional structures and the comblike structures. It is
shown that a new form of action, named parallel action,
plays an important role in this structure. Moreover, our re-
sults can be well applied to multichannel systems.

The scheme of the loop structure is shown in Fig. 1. Each
cell is composed of a slender segment of length d1 connected
to a loop of length d2+d3 �each loop is constructed of two
arms of different lengths d2 and d3�.

Our study is conducted with the help of the interface re-
sponse theory �21,22�. In this theory, the Green’s functions of
a network structure can be obtained by the Green’s functions
of its elementary constituents. For the loop structure, by lin-
ear superposition of the corresponding elements associated to
those of the slender segments and the loops, one deduces the
�3�3� matrix �g�MM��−1 associated with the unit cell with
free ends,
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with Fj =�� j��� /�� j��� and � j = �� /c��� j����� j���, where
Sj and Cj �j=1,2 ,3� are abbreviations of sin�� jdj� and
cos�� jdj�, respectively. The corresponding �2�2� matrix
�gj�MM��−1 associated only to the two ends of this unit cell
was finally found to be

�gj�MM��−1 = �A1 A2

A3 A4
	 , �2�

with

A1 = F1�F1S1S2S3 − F2C1C2S3 − F3C1C3S2� , �3�

A2 = A3 = F1�F2S3 + F3S2� , �4�

A4 = − F1F2C1C2S3 − F1F3C1C3S2 + F2
2S1S2S3

+ F3
2S1S2S3 − 2F2F3S1�C2C3 − 1� . �5�

For an infinite periodic structure, all the interface elements of
the inverse Green’s function �g��MM��−1 is an infinite tridi-
agonal matrix formed by linear superposition of the elements
�gj�MM��−1. Taking advantage of the translational periodic-
ity of this system, the matrix �g��MM��−1 can be Fourier
transformed. Then the dispersion relation can be obtained,

cos�kd� =
1
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− S1S2S3�F1

2 + F2
2 + F3

2

2F1
	 + F2C1C2S3

+ F3C1C3S2 +
F2F3

F1
S1�C2C3 − 1�� , �6�

where kd is the Bloch wave phase. For a finite size structure,
the transmittance T is related to the elements of the Green’s
function g of this system by the following expressions:

Tn = �2iF0g�1,n + 1��2, �7�

where F0 is the relative admittance of the substrate and n is
the number of unit cells.

Suppose the slender segments �medium 1� in the loop
structure are substituted by a NIM, whose electromagnetic
parameters are assumed to be isotropic and dispersive,

�1��� = �10 −
�

�2 , �1��� = �10 −
�

�2 , �8�

where � is the frequency measured in GHz and �10, �10, �,
and � are positive constants. If �1��� and �1��� are simul-
taneously negative, the corresponding refractive index
n1���=−��1����1��� is negative too. In the following, we

choose �2=�3=4 and �2=�3=1 for the positive index mate-
rial, and �10=1, �10=1, and �=�=100 for the NIM. The
frequency region where the refractive index is negative is
from zero to 1.6 GHz.

We calculate the band structure and the transmission spec-
trum of the electromagnetic wave in this structure. In Fig.
2�a� we show the special band gap in the frequency region
we are interested in, which remains invariant while changing
the unit-cell size by a scaling factor. Figure 2�b� is the trans-
mission spectrum of a finite size structure corresponding to
the band structure in Fig. 2�a�. In the frequency interval be-
tween the two gap edges, � jdj �j=1,2 ,3� are small quanti-
ties, which suggests that this band gap is a subwavelength
band gap. Moreover, in comparison with the zero-n̄ gap in
the 1D PhC with the same system parameters �in order to
ensures that the two structures are of the same size, we con-
sider the situation corresponding to a specific length of the
loop d2=d3�, this gap is obviously deeper and broader, as
depicted in Fig. 3.

To illustrate the influence of the parallel channels on the
transmission of the electromagnetic wave in this structure,
we expand cos�� jdj� and sin�� jdj� in Taylor series,

cos�� jdj� = 1 −
�� jdj�2

2
+ O��� jdj�2� ,

sin�� jdj� = � jdj + O�� jdj� , �9�

and then obtain two equations which determine the positions
of the gap edges,

�1���d1 + ��2d2 + �3d3� = 0, �10a�

�1���d1 +
�2d2�3d3

�2d2 + �3d3
= 0. �10b�

It can be seen that the low gap edge is determined by the
dielectric parameters of the constituted materials, and the
high gap edge by the magnetic parameters. In comparison
with those of the 1D PhC �23�,

�1���d1 + �2d2 = 0, �11a�

�1���d1 + �2d2 = 0, �11b�

and those of the comblike structure under the boundary con-
dition H=0 �19�,

�1���d1 + �2d2 = 0, �12a�
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�1��� = 0, �12b�

the expressions of the loop structure are quite different.
Equations. �11a� and �11b� indicate that the effective param-
eters of the 1D PhC can be given as spatial-averaged param-
eters, while Eqs. �12a� and �12b� show that the resonators of
the comblike structure make a great contribution to the elec-
tric field in the backbone wave guide. For the loop structure,

the exhibition of the special relation between the two arms of
the loop as

��d�loop = �2d2 + �3d3, �13a�

��d�loop =
�2d2�3d3

�2d2 + �3d3
, �13b�

suggests a new form of action—we call it parallel action. It
can be understood that in the subwavelength regime, the two
waves traveling along the two arms respectively are almost
phase coincident, thus the interference between them could
hardly open a band gap. We consider that this structure can
be treated as homogeneous to good approximation. The two
arms of the loop perform as parallel capacitors in response to
the electric component of the electromagnetic wave, and par-
allel inductors to the magnetic component. This parallel ac-
tion makes the effective impedance of the loop smaller than
the intrinsic impedance of either of the two arms. The high
impedance contrast results in strong reflection at the interface
between the slender segment and the loop in each cell. This
behavior ensures the capability of the loop structure to obtain
a large band gap. As it is well known, the inhibition of elec-
tromagnetic modes, spontaneous emission, and zero-point
fluctuations become more pronounced, when the PBG is
made larger �21�.

The width of this gap can also be enlarged easily through
tuning system parameters. The frequencies corresponding to
the low and high edges of this special gap are obtained by
substituting in Eqs. �10a� and �10b� the expressions of �1���
and �1��� from Eq. �8�, respectively,

�L =� �
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d2

d1
�1 +
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�2

d3

d2
	 , �14a�

�H =� �

�10 + �2
d2

d1
�

1

1 +
�2

�3

d2

d3

. �14b�

When �10, �2, �3 increases or � decreases, the low gap-edge
moves lower, and with smaller �10 or bigger �, the high
gap-edge moves higher. Once d2 /d1 or d3 /d1 increases, both
edges move to lower positions, but the width of the band gap
is still enlarged. Since the band gap is larger than that of the
1D PhC with the same system parameters, and the edges are
more tunable than that of the comblike structure, the loop
structure gains competitive advantages.

Furthermore, we move our attention to multichannel sys-
tems where each loop is substituted for more than two wires
and M describes the number of channels. The edges of the
scaling invariant gap are

�1���d1 + ��d�M = 0, �15a�

�1���d1 + ��d�M = 0, �15b�

with
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FIG. 2. �a� Invariance of the width of the special band gap with
unit-cell size scaling. Solid line: d1=8 mm, d2=6 mm, and d3

=4 mm; dotted line: d1, d2, and d3 are scaled by 1 /2, respectively;
dashed line: d1, d2, and d3 are scaled by 5 /4, respectively. �b�
Transmittance through a finite size structure corresponding to the
band structure in �a�. These three structures are of the same total
length. Solid line: 10 unit cells with d1=8 mm, d2=6 mm, and d3

=4 mm; dotted line: 20 unit cells with unit-cell size scaled by 1 /2;
dashed line: eight unit cells with unit-cell size scaled by 5 /4.
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FIG. 3. Transmittance as a function of frequency through a finite
size loop structure containing NIMs. Solid line: Loop structure;
dashed line: 1D PhC; dotted line: comblike structure. They have
identical parameters and the two arms of the loop are of the same
length, dlayer1=d1=8 mm and dlayer2=d2=d3=6 mm, and the num-
ber of the periodic cells is n=10.
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These results suggest that the parallel action is a universal
action in the periodic structures containing more-than-one
channels. In general, the loop structure is also a member of
this group with M =2. In Fig. 4 we show how the band gap
varies as M increases. The calculations support our opinion
that the band gap would be deeper and broader if there are
more channels.

It is important to note that our calculation is conducted
within the subwavelength limit. When this condition is not
satisfied, Eqs. �10a�, �10b�, �11a�, �11b�, �12a�, �12b�, �13a�,
�13b�, �14a�, �14b�, �15a�, and �15b� will be invalid. Figure 5

shows that this special band gap becomes sensitive to scaling
when the unit cell is large enough, and new gaps appear
which are originated from the interference of the Bragg scat-
tering at the interfaces and the interference of the parallel
channels in each cell.

In conclusion, we have shown that the loop structure con-
taining NIMs possesses a band gap which is invariant with
length scaling. It has been shown that the behavior of its
edges is quite different from those of the one-dimensional
and the comblike structures due to the parallel action of the
loop. From the analytical expressions of the gap edges, the
width of this band gap can be easily enlarged through tuning
system parameters. Moreover, we constructed multichannel
structures based on the loop structure to obtain larger band
gaps.
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